ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 帝京平成大学紀要
  2. 第35巻(2024.3)

【原著論文】生成AI とソフトウェア開発:中規模プロジェクトにおける人間とChatGPT のコミュニケーション分析

https://thu.repo.nii.ac.jp/records/2000682
https://thu.repo.nii.ac.jp/records/2000682
79c686ba-0af8-4c15-b56a-71d8d24e85bc
名前 / ファイル ライセンス アクション
kiyou35_037.pdf kiyou35_037.pdf (1.4 MB)
Item type 帝京平成大学紀要(1)
公開日 2024-03-30
タイトル
タイトル 【原著論文】生成AI とソフトウェア開発:中規模プロジェクトにおける人間とChatGPT のコミュニケーション分析
言語 ja
その他のタイトル
その他のタイトル Generative AI and Software Development : An Analysis of Human-ChatGPT Communication in Medium-Scale Projects
作成者 米澤, 直記

× 米澤, 直記

ja 米澤, 直記

ja-Kana ヨネザワ, ナオキ

en YONEZAWA, Naoki

Search repository
主題
主題Scheme Other
主題 Conversation Analysis, Code Generation AI, Medium-scale Software Development, ChatGPT, Contextual Continuity
内容記述
内容記述タイプ Abstract
内容記述 This study critically examines the utility and limitations of the generative AI (Artificial Intelligence) model, ChatGPT, in the development of medium-scale software, specifically focusing on a numerical puzzle game called “FunctorX". The research aims to shed light on how conversational AI can contribute to enhancing the efficiency and productivity of software development. While ChatGPT has shown promising results in small-scale programming tasks, it struggles to maintain consistency in larger projects from design to code generation, necessitating human intervention. In our methodology, we engaged in 643 dialogues with ChatGPT throughout the development of FunctorX, capturing conversation logs and categorizing them using 16 labels corresponding to various development stages, such as “Requirement Analysis", “Design", “Implementation", and “Deployment". The labels helped us determine the extent to which ChatGPT was useful or problematic at each stage. Notably, conversations around the “Implementation: Number Input" and “Implementation: Event Listener" were the most frequent, indicating a concentration of discussion during the implementation phase. Our lexical analysis, done via MeCab, revealed that the dialogues were primarily focused on technical aspects, as words like “button", “cell", “input" appeared frequently from the human side, whereas ChatGPT often used terms like “element" and “case". FunctorX's development also exposed difficulties in coordinating the event handler and the number input mechanism, revealing a nuanced understanding of where human expertise remains critical. Moreover, our research brings forth several recommendations for improving conversational code-generating AI. These include ensuring contextual continuity, clarifying the rationale behind any strategy shifts, reducing excessive apologies, and improving semantic accuracy. We posit that these enhancements are crucial for more effective code generation. Although AI in code generation offers exciting prospects, it is not without challenges that need addressing. By implementing these improvements, we expect to witness a significant leap in the AI's effectiveness and precision, making it more valuable in software development environments.
出版者
出版者 帝京平成大学
言語 ja
言語
言語 jpn
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ departmental bulletin paper
ISSN
収録物識別子タイプ ISSN
収録物識別子 13415182
書誌情報 ja : 帝京平成大学紀要

巻 35, p. 37-48, 発行日 2024-03
戻る
0
views
See details
Views

Versions

Ver.1 2025-02-18 10:52:55.151908
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3